Biomechanics of Stand-Alone Lateral Interbody Fixation at L4-5 and L5-S1*

Kingsley R. Chin, M.D., Institute for Modern and Innovative Surgery, Fort Lauderdale, FL
L. Perez-Orribo, Barrow Neurological Institute, Phoenix, AZ
Philip M. Reyes, BSE, Barrow Neurological Institute, Phoenix, AZ
Anna G.U. Sawa, M.S., Barrow Neurological Institute, Phoenix, AZ
Steven C. Anagnost, M.D., The Orthopaedic Center, Tulsa, OK
Vivek P. Kushwaha, M.D., Houston Orthopedic and Spine Hospital, Houston, TX
Josue P. Gabriel, M.D., St. Anthony’s Memorial Hospital, Effingham, IL
S. Craig Meyer, M.D., Columbia Orthopaedic Group, Columbia, MO
Carl A.R. Bruce, M.D., University of the West Indies, Kingston, Jamaica
Warren D. Yu, M.D., George Washington University Hospital, Washington DC
Neil R. Crawford, Ph.D., Barrow Neurological Institute, Phoenix, AZ

Research Performed At:
Barrow Neurological Institute, Spinal Biomechanics, Phoenix, AZ 85013

Principal Investigator:
Neil R. Crawford, Ph.D.

Co-Investigator:
Kingsley R. Chin, M.D.
Institute for Modern and Innovative Surgery, Fort Lauderdale, FL 33311

Background Context
Transection of lateral annulus and removal of intervertebral disc are destabilizing procedures. However, it is unclear to what extent the insertion of a lateral interbody cage into the disc space restores stability to the motion segment. This question is of interest at L4-L5 where this is currently being done clinically as well as at L5-S1, where techniques for lateral interbody placement are inevitably being developed.

Purpose
The goal of this in vitro study was to quantify the stability imparted by a stand-alone lateral interbody lumbar PEEK cage that spans the width of the vertebral body.

Study Design/Setting
Nondestructive in vitro flexibility test with paired comparison of stability in two conditions.

Patient Sample
Seven human cadaveric L3-S1 specimens were studied. Procedures were performed at L4-L5 and L5-S1.

Outcome Measures
The range of motion (ROM) was quantified at L4-L5 and L5-S1 during flexion, extension, axial rotation, and lateral bending.

Methods
Nonconstraining nondestructive pure moments (7.5 Nm maximum) were applied to specimens while recording angular L4-L5 and L5-S1 motion optoelectronically. Specimens were tested intact and then again after discectomies at L4-L5 and L5-S1 and insertion of lateral interbody spacers (S-LIFT) spanning the entire width of the endplate. Difference in mean ROM in the two conditions at either level was assessed using paired two-tailed Student’s t-tests.

Results
At L4-L5, insertion of S-LIFT resulted in mean reductions in ROM of 26% during flexion (p=0.06), 23% during extension (p=0.09), 15% during axial rotation (p=0.19) and 8% during lateral bending (p=0.67) relative to the intact condition. At L5-S1, insertion of S-LIFT resulted in mean reductions in ROM of 43% during flexion (p=0.017), 35% during extension (p=0.016), 16% during axial rotation (p=0.30) and 14% during lateral bending (p=0.50) relative to the intact condition.

Discussion & Conclusion
The surgeon can expect a stand-alone lateral interbody device to provide a reasonably stabilizing effect but not enough to impart rigidity. Therefore posterior supplemental fixation is needed for greater rigidity.

References

*Pending Publication