Biomechanics of Spinous Process Plating With and Without Lateral or Transforaminal Interbody Cage at L4-5*

Kingsley R. Chin, M.D., Institute for Modern and Innovative Surgery, Fort Lauderdale, FL
L. Perez-Orribo, Barrow Neurological Institute, Phoenix, AZ
Philip M. Reyes, BSE, Barrow Neurological Institute, Phoenix, AZ
Anna G.U. Sawa, M.S., Barrow Neurological Institute, Phoenix, AZ
Steven C. Anagnost, M.D., The Orthopaedic Center, Tulsa, OK
Vivek P. Kushwaha, M.D., Houston Orthopedic and Spine Hospital, Houston, TX
Josue P. Gabriél, M.D., St. Anthony’s Memorial Hospital, Effingham, IL
S. Craig Meyer, M.D., Columbia Orthopaedic Group, Columbia, MO
Carl A.R. Bruce, M.D., University Hospital of the West Indies, Kingston, Jamaica
Warren D. Yu, M.D., George Washington University Hospital, Washington DC
Neil R. Crawford, Ph.D., Barrow Neurological Institute, Phoenix, AZ

Background Context
A spinous process plate (SPP) is one option for stabilizing a lumbar motion segment to achieve fusion. It was hypothesized that the stabilizing potential of the SPP may differ with and without interbody support, and depending on the surface area covered by the interbody spacer.

Purpose
To quantify lumbar stability after placement of a SPP in the setting of an intact disc, after lateral (trans-psoas) interbody fixation using the Sagittal Lumbar Interbody Fusion Technology (S-LIFT) cage, and after transforaminal cage placement using the Transforaminal Lumbar Interbody Fusion Technology (T-LIFT) cage.

Study Design/Setting
Nondestructive repeated-measures in vitro flexibility test comparing stability of several constructs.

Patient Sample
Seven human cadaveric L3-S1 specimens were studied, with procedures performed at L4-L5.

Outcome Measures
L4-L5 range of motion (ROM) was assessed during flexion, extension, axial rotation, and lateral bending.

Methods
Specimen flexibility was tested by applying nonconstraining nondestructive pure moments (7.5 Nm maximum) while recording specimen motion optoelectronically in 3D. Specimens were tested (A) intact, then after (B) SPP, (C) S-LIFT, (D) SPP+S-LIFT, (E) T-LIFT, (F) SPP+T-LIFT.

Results
T-LIFT+SPP allowed significantly greater ROM during lateral bending and axial rotation than SPP with intact disc (p<0.001, RM-ANOVA/Holm-Sidak) or S-LIFT+SPP (p<0.03). Conversely, S-LIFT+SPP allowed slightly smaller ROM than SPP with intact disc during flexion, extension, and lateral bending, although differences were not significant.

Conclusion
At the loads studied and utilizing the same specimens to study two conditions of interbody support, it was found that the SPP provided the same or slightly better stability with S-LIFT lateral interbody cage in place as in the intact condition, whereas the SPP performed significantly worse with a T-LIFT in place than in the intact condition. These findings are likely due to the much larger support area provided by S-LIFT lateral interbody cage than a T-LIFT lateral interbody cage relative to the amount of disc removed.

References

This study was sponsored by the LES Society
Learn more about the LES Society at www.les-society.org