Biomechanics of Lumbar Lateral Interbody Fixation Augmented with Pedicle Screws, Facet Screws, or Spinous Process Plate

Kingsley R. Chin, M.D., Institute for Modern and Innovative Surgery, Fort Lauderdale, FL
L. Perez-Orribo, Barrow Neurological Institute, Phoenix, AZ
Philip M. Reyes, BSE, Barrow Neurological Institute, Phoenix, AZ
Anna G.U. Sawa, M.S, Barrow Neurological Institute, Phoenix, AZ
Steven C. Anagnost, M.D., The Orthopaedic Center, Tulsa, OK
Vivek P. Kushwaha, M.D., Houston Orthopedic and Spine Hospital, Houston, TX
Josue P. Gabriel, M.D., St. Anthony’s Memorial Hospital, Effingham, IL
S. Craig Meyer, M.D., Columbia Orthopaedic Group, Columbia, MO
Carl A.R. Bruce, M.D., Univeristy Hospital of the West Indies, Kingston, Jamaica
Warren D. Yu, M.D., George Washington University Hospital, Washington DC
Neil R. Crawford, Ph.D., Barrow Neurological Institute, Phoenix, AZ

Research Performed At:
Barrow Neurological Institute, Spinal Biomechanics, Phoenix, AZ 85013

Principal Investigator:
Neil R. Crawford, Ph.D.

Co-Investigator:
Kingsley R. Chin, M.D.
Institute for Modern and Innovative Surgery, Fort Lauderdale, FL 33311

Background Context
Posterior stabilization adds rigidity after placement of a lumbar lateral (trans-psoas) interbody cage (S-LIFT) that may aid in fusion and avoid cage dislodgement and subsidence. Three options for additional stabilization are pedicle screw-rod fixation (PS), transfacet pedicle screws (FS) and spinous process plate (SPP). It is unclear how constructs with these components compare in terms of the relative stability offered.

Purpose
The goal of this in vitro study was to quantify and compare the stabilizing potential at L4-L5 of constructs that include a lateral interbody cage (S-LIFT), PS, FS, and SPP fixation.

Study Design/Setting

Patient Sample
Fourteen human cadaveric lumbar (L3-S1) specimens were studied, with procedures performed at L4-L5.

Outcome Measures
Range of motion (ROM) was assessed at L4-L5 during flexion, extension, axial rotation, and lateral bending.

Methods
Flexibility tests were performed by applying nonconstraining nondestructive pure moments (7.5 Nm maximum) while recording specimen motion optoelectronically in 3D. Specimens in Group 1 were tested (A) intact, (B) after S-LIFT, (C) after S-LIFT+SPP, (D) after S-LIFT+SPP+unilateral FS (UFS), and (E) after S-LIFT+SPP+bilateral FS (BFS). Specimens in Group 2 were tested (A) intact, (B) after S-LIFT, (C) after S-LIFT+SPP, (D) after S-LIFT+SPP+unilateral PS-rod fixation (UPS), and (E) after S-LIFT+bilateral PS-rod fixation (BPS).

Results
All constructs that included posterior augmentation resulted in a significant reduction in ROM relative to intact (p<0.05, One-Way ANOVA/Holm-Sidak), except S-LIFT+SPP during axial rotation (p=0.43) and S-LIFT+SPP+UPS during axial rotation (p=0.07). During flexion and extension, there was no significant difference among constructs in the stability offered. During lateral bending and axial rotation, S-LIFT+SPP allowed significantly greater ROM than all other constructs except S-LIFT+SPP+UPS (p<0.05).

Discussion & Conclusion
At the loads studied, it was found that there was no statistically significant difference in the ROM allowed by S-LIFT+SPP+UFS, S-LIFT+SPP+BFS, and S-LIFT+BPS. These findings indicate that each of these three constructs should provide an approximately equivalent environment for fusion.

References